序列求和 V4

题意概述

给定$n$和$k$,求$\sum_{i=1}^n i^k \bmod 10^9+7$。有$T$组数据。

数据范围:$1 \le T \le 500, \ 1 \le n \le 10^{18}, \ 1 \le k \le 50000$。

算法分析 1

设答案为$f(n)$。这是一个$(k+1)$次多项式,只要确定$(k+2)$个点就可以确定$f$。

我们可以令$x=1\ldots k+2$,在$O(k\log k)$时间内计算出它们对应的$y$。

利用拉格朗日插值法。假设有$n$个点$(x_i, y_i)$,那么

$$
f(x)=\sum_{i=1}^n {\prod_{j \in [1, n] \land j \neq i} (x-x_j) \over \prod_{j \in [1, n] \land j \neq i} (x_i-x_j)}y_i
$$

考虑分子部分。在给定$x$的情况下,这一部分可以$O(k)$预处理$O(1)$求值。

考虑分母部分。它形如$\prod_{j \in [i-k-2, i-1] \land j \neq 0} j$,可以在插值时$O(1)$维护。

总时间复杂度为$O(Tk\log k)$。

代码 1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
#include <cstdio>

#define int long long

void read(int &n) {
char c; while ((c = getchar()) < '0' || c > '9') ; n = c - '0';
while ((c = getchar()) >= '0' && c <= '9') (n *= 10) += c - '0';
}

static const int K = 50005;
static const int MOD = 1000000007;
int n, k, a[K], p[K], q[K], inv[K], base[K];

int power(int a, int b) {
int ret = 1; a %= MOD, b %= MOD - 1;
while (b) b & 1 && ((ret *= a) %= MOD), (a *= a) %= MOD, b >>= 1;
return ret;
}

int calc(int n) {
if (n <= k + 2) return a[n]; n %= MOD;
int w = power(base[k + 2], MOD - 2), ans = 0;
p[0] = q[k + 3] = 1;
for (int i = 1; i <= k + 2; ++ i) p[i] = p[i - 1] * (n - i) % MOD;
for (int i = k + 2; i; -- i) q[i] = q[i + 1] * (n - i) % MOD;
for (int i = 1; i <= k + 2; ++ i) (ans += a[i] * w % MOD * p[i - 1] % MOD * q[i + 1]) %= MOD, w = w * (i - k - 2) % MOD * inv[i] % MOD;
return (ans + MOD) % MOD;
}

signed main() {
int T; read(T), base[1] = 1;
for (int i = 1; i < K; ++ i) inv[i] = power(i, MOD - 2);
for (int i = 2; i < K; ++ i) base[i] = base[i - 1] * (MOD + 1 - i) % MOD;
while (T --) {
read(n), read(k);
for (int i = 1; i < k + 3; ++ i) a[i] = (a[i - 1] + power(i, k)) % MOD;
printf("%lld\n", calc(n));
}
return 0;
}

算法分析 2

此题也可以用伯努利数解决,因为

$$
\sum_{i=1}^n i^k={1 \over k+1} \sum_{i=0}^k (-1)^i {k+1 \choose i} B_in^{k+1-i}
$$

其中伯努利数由其指数型生成函数${x \over e^x-1}$定义。易知

$$
\sum_{i=0}^{\infty} B_i{x^i \over i!}={x \over e^x-1}={x \over \sum_{i=1}^{\infty} {x^i \over i!}}={1 \over \sum_{i=0}^{\infty} {x^i \over (i+1)!}}
$$

只要对分母求多项式逆元,即可得到伯努利数,时间复杂度$O(k\log k)$。其它部分均可$O(k)$预处理,答案也可以$O(k)$计算。因此总时间复杂度是$O(k\log k+Tk)$。

代码 2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstring>

#define int long long

static int const N = 200000;
static int const MOD = 1000000007;
static int const M = 31622;
static double const PI = acos(-1);
int b[N], rev[N], fac[N], inv[N];
class complex {
private:
double x, y;

public:
complex(double _x = 0, double _y = 0) : x(_x), y(_y) {}
double real() { return x; }
friend complex operator+(complex const &a, complex const &b) {
return complex(a.x + b.x, a.y + b.y);
}
friend complex operator-(complex const &a, complex const &b) {
return complex(a.x - b.x, a.y - b.y);
}
friend complex operator*(complex const &a, complex const &b) {
return complex(a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x);
}
} wn[N], A[N], B[N], C[N], D[N], E[N], F[N], G[N];

int power(int a, int b) {
int ret = 1;
for (; b; b >>= 1)
b & 1 && ((ret *= a) %= MOD), (a *= a) %= MOD;
return ret;
}

int init(int m) {
int n = 1, l = 0;
for (; n <= m; n <<= 1, ++l)
;
for (int i = 1; i < n; ++i)
rev[i] = rev[i >> 1] >> 1 | (i & 1) << l - 1;
for (int i = 0; i < n >> 1; ++i)
wn[i] = complex(cos(2 * PI / n * i), sin(2 * PI / n * i));
return n;
}

void fft(complex *a, int n, bool inv = 0) {
for (int i = 0; i < n; ++i)
if (i < rev[i])
std::swap(a[i], a[rev[i]]);
for (int i = 1; i < n; i <<= 1)
for (int j = 0; j < n; j += i << 1)
for (int k = 0; k < i; ++k) {
complex x = a[j + k], y = wn[n / (i << 1) * k] * a[j + k + i];
a[j + k] = x + y, a[j + k + i] = x - y;
}
if (inv) {
std::reverse(a + 1, a + n);
for (int i = 0; i < n; ++i)
a[i] = a[i].real() / n;
}
}

int get_mod(double t) {
return (int)(fmod(t, MOD) + MOD + 0.5) % MOD;
}

void get_inv(int *f, int *g, int n) {
if (n == 1)
return void(g[0] = power(f[0], MOD - 2));
get_inv(f, g, n + 1 >> 1);
int len = init(n << 1);
for (int i = 0; i < n + 1 >> 1; ++i)
A[i] = g[i] / M, B[i] = g[i] % M;
for (int i = n + 1 >> 1; i < len; ++i)
A[i] = B[i] = 0;
for (int i = 0; i < n; ++i)
C[i] = f[i] / M, D[i] = f[i] % M;
for (int i = n; i < len; ++i)
C[i] = D[i] = 0;
fft(A, len), fft(B, len), fft(C, len), fft(D, len);
for (int i = 0; i < len; ++i) {
E[i] = 0 - A[i] * C[i];
F[i] = 0 - A[i] * D[i] - B[i] * C[i];
G[i] = 2 - B[i] * D[i];
}
fft(E, len, 1), fft(F, len, 1), fft(G, len, 1);
for (int i = 0; i < n; ++i) {
int x = get_mod(E[i].real()) * M % MOD * M % MOD;
int y = get_mod(F[i].real()) * M % MOD;
int z = get_mod(G[i].real());
int w = (x + y + z) % MOD;
C[i] = w / M, D[i] = w % M;
}
for (int i = n; i < len; ++i)
C[i] = D[i] = 0;
fft(C, len), fft(D, len);
for (int i = 0; i < len; ++i) {
E[i] = A[i] * C[i];
F[i] = A[i] * D[i] + B[i] * C[i];
G[i] = B[i] * D[i];
}
fft(E, len, 1), fft(F, len, 1), fft(G, len, 1);
for (int i = 0; i < n; ++i) {
int x = get_mod(E[i].real()) * M % MOD * M % MOD;
int y = get_mod(F[i].real()) * M % MOD;
int z = get_mod(G[i].real());
g[i] = (x + y + z) % MOD;
}
}

int get_c(int n, int m) {
return fac[n] * inv[m] % MOD * inv[n - m] % MOD;
}

signed main() {
int T;
fac[0] = 1;
for (int i = 1; i < N; ++i)
fac[i] = fac[i - 1] * i % MOD;
inv[N - 1] = power(fac[N - 1], MOD - 2);
for (int i = N - 1; i; --i)
inv[i - 1] = inv[i] * i % MOD;
get_inv(inv + 1, b, 50001);
for (int i = 0; i < 50001; ++i)
(b[i] *= fac[i]) %= MOD;
for (scanf("%lld", &T); T--;) {
int n, k, ans = 0;
scanf("%lld%lld", &n, &k), n %= MOD;
for (int i = k, f = k & 1 ? -1 : 1, p = n; ~i; --i, f = -f, (p *= n) %= MOD)
ans += (MOD + f) * get_c(k + 1, i) % MOD * b[i] % MOD * p % MOD;
printf("%lld\n", ans % MOD * power(k + 1, MOD - 2) % MOD);
}
return 0;
}