Strange Way to Express Integers

题目描述

Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is described as following:

  • Choose $k$ different positive integers $a_1, a_2, \ldots, a_k$. For some non-negative $m$, divide it by every $a_i$ to find the remainder $r_i$. If $a_1, a_2, \ldots, a_k$ are properly chosen, $m$ can be determined, then the pairs $(a_i, r_i)$ can be used to express $m$.

“It is easy to calculate the pairs from $m$,” said Elina. “But how can I find $m$ from the pairs?”

Since Elina is new to programming, this problem is too difficult for her. Can you help her?

题意概述

给定同余方程组

$$
\left\{
\begin{array}{c}
x \equiv r_1 \pmod{a_1} \\
x \equiv r_2 \pmod{a_2} \\
\cdots \\
x \equiv r_k \pmod{a_k}
\end{array}
\right.
$$

求$x$的最小非负整数解。

数据范围:所有输入输出均可以表示为 64 位整型。

算法分析

对于两个方程

$$
\begin{align}
x &\equiv r_1 \pmod{a_1} \\
x &\equiv r_2 \pmod{a_2}
\end{align}
$$

考虑将它们合并。易知

$$
x=r_1+k_1a_1=r_2+k_2a_2
$$

移项得

$$
k_1a_1=r_2-r_1+k_2a_2
$$

由贝祖定理可知,这个方程有整数解的充要条件为$(a_1, a_2) \mid r_2-r_1$。方程两边同时除以$(a_1, a_2)$

$$
\begin{align}
k_1{a_1 \over (a_1, a_2)}&={r_2-r_1 \over (a_1, a_2)}+k_2{a_2 \over (a_1, a_2)} \\
k_1{a_1 \over (a_1, a_2)} &\equiv {r_2-r_1 \over (a_1, a_2)} \pmod{ {a_2 \over (a_1, a_2)}} \\
k_1 &\equiv \left( {a_1 \over (a_1, a_2)} \right)^{-1} \cdot {r_2-r_1 \over (a_1, a_2)} \pmod{ {a_2 \over (a_1, a_2)}}
\end{align}
$$

将其代回$x=r_1+k_1a_1$,得

$$
x \equiv r_1+k_1a_1 \pmod{ {a_1a_2 \over (a_1, a_2)}}
$$

至此已成功将两个方程合并为一个相同形式的方程。

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
/*
* Your life would be very empty if you had nothing to regret.
*/

#include <algorithm>
#include <cstdio>
#include <cstring>

#define int long long

int ex_gcd(int a, int b, int &x, int &y) {
if (!b) {
x = 1, y = 0;
return a;
}
int ret = ex_gcd(b, a % b, y, x);
y -= a / b * x;
return ret;
}

int get_gcd(int a, int b) {
int x, y;
return ex_gcd(a, b, x, y);
}

int get_inv(int a, int b) {
int x, y;
return ex_gcd(a, b, x, y), (x += b) %= b;
}

signed main() {
for (int k, a, r; ~scanf("%lld%lld%lld", &k, &a, &r);) {
int flag = 0;
for (int ai, ri; --k;) {
scanf("%lld%lld", &ai, &ri);
int gcd = get_gcd(a, ai);
if ((r - ri) % gcd)
flag = 1;
r += get_inv(a / gcd, ai / gcd) * ((ri - r) / gcd) % (ai / gcd) * a;
(a /= gcd) *= ai, ((r %= a) += a) %= a;
}
if (flag)
puts("-1");
else
printf("%lld\n", r);
}
return 0;
}

Strange Way to Express Integers
https://regmsif.cf/2018/03/04/oi/strange-way-to-express-integers/
作者
RegMs If
发布于
2018年3月4日
许可协议