Ceizenpok's Formula

题目描述

Dr. Ceizenp’ok from planet i1c5l became famous across the whole Universe thanks to his recent discovery - the Ceizenpok’s formula. This formula has only three arguments: $n, k$ and $m$, and its value is a number of $k$-combinations of a set of $n$ modulo $m$.

While the whole Universe is trying to guess what the formula is useful for, we need to automate its calculation.

题意概述

求${n \choose k} \bmod m$。

数据范围:$1 \le n \le 10^{18}, \ 0 \le k \le n, \ 2 \le m \le 10^6$。

算法分析

$$
x={n \choose k}, \ m=p_1^{a_1}p_2^{a_2} \cdots p_q^{a_q}
$$

可以列出方程组

$$
\left\{
\begin{array}{c}
x \equiv r_1 \pmod{p_1^{a_1}} \\
x \equiv r_2 \pmod{p_2^{a_2}} \\
\cdots \\
x \equiv r_q \pmod{p_q^{a_q}}
\end{array}
\right.
$$

由于模数两两互质,所以该方程组在模$m$意义下有唯一解。

考虑如何求$r_i$。实际上,我们要求的就是${n \choose k} \bmod p_i^{a_i}$。我们知道

$$
{n \choose k}={n! \over k!(n-k)!}
$$

那么只要求出$n! \bmod p_i^{a_i}, \ k! \bmod p_i^{a_i}, \ (n-k)! \bmod p_i^{a_i}$的值,就可以用逆元求出${n \choose k} \bmod p_i^{a_i}$。

对于如何求$n! \bmod p_i^{a_i}$,令

$$
f(n)=n! \bmod p_i^{a_i}
$$

由$x \equiv x+p_i^{a_i} \pmod{p_i^{a_i}}$,可得

$$
f(n)=\left(f\left(\left\lfloor{n \over p_i}\right\rfloor\right)\cdot p_i^{\lfloor n/p_i \rfloor}\cdot\left(\prod_{i \in [1, p_i^{a_i}], \ p_i\not\mid i}i\right)^{\lfloor n/p_i^{a_i} \rfloor}\cdot\prod_{i \in [1, n \bmod p_i^{a_i}], \ p_i\not\mid i}i\right)\bmod p_i^{a_i}
$$

但是$k!, \ (n-k)!$在模$p_i^{a_i}$意义下可能不存在逆元,因此需要将$n!, \ k!, \ (n-k)!$中的$p_i$因子提取出来,求出逆元后再乘回去。

这样就得到了所有$r_i$。用中国剩余定理求解方程组即可。

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
/*
* Your lucky number has been disconnected.
*/

#include <algorithm>
#include <cstdio>
#include <cstring>

#define int long long

int power(int a, int b, int m) {
int ret = 1;
for (; b; b >>= 1)
b & 1 && ((ret *= a) %= m), (a *= a) %= m;
return ret;
}

void ex_gcd(int a, int b, int &x, int &y) {
if (!b) {
x = 1, y = 0;
return;
}
ex_gcd(b, a % b, y, x), y -= a / b * x;
}

int get_inv(int a, int b) {
int x, y;
ex_gcd(a, b, x, y);
return (x + b) % b;
}

int get_fac(int n, int p, int k) {
int m = power(p, k, 1e9), ret = 1;
for (; n; n /= p) {
if (n / m) {
int rec = 1;
for (int i = 2; i < m; ++i)
if (i % p)
(rec *= i) %= m;
(ret *= power(rec, n / m, m)) %= m;
}
for (int i = n % m; i > 1; --i)
if (i % p)
(ret *= i) %= m;
}
return ret;
}

int calc(int N, int K, int M, int p, int k) {
int a = get_fac(N, p, k), b = get_fac(K, p, k), c = get_fac(N - K, p, k),
cnt = 0;
for (int i = N; i; i /= p)
cnt += i / p;
for (int i = K; i; i /= p)
cnt -= i / p;
for (int i = N - K; i; i /= p)
cnt -= i / p;
int m = power(p, k, 1e9),
ret = a * get_inv(b, m) % m * get_inv(c, m) % m * power(p, cnt, m) % m;
return ret * (M / m) % M * get_inv(M / m, m) % M;
}

signed main() {
int N, K, M, ans = 0;
scanf("%lld%lld%lld", &N, &K, &M);
for (int i = 2, t = M; t > 1; ++i)
if (!(t % i)) {
int k = 0;
for (; !(t % i); ++k, t /= i)
;
(ans += calc(N, K, M, i, k)) %= M;
}
printf("%lld\n", ans);
return 0;
}

Ceizenpok's Formula
https://regmsif.cf/2018/03/05/oi/ceizenpoks-formula/
作者
RegMs If
发布于
2018年3月5日
许可协议